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Classical computing "limitations”

billions of years
-

CLASSICAL COMPUTHR
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Quantum computing relies on one promise:

Quantum computing will massively reduce the complexity of
some problems currently intractable to classical computers

(In theory) Taking advantage of exponential grow

Type of scaling Time to solve the problem¥*:

Classical algorithm 2 mins 330 years 3300 years Age of the
with exponential universe
runtime
UTER Quantum algorithm 2 mins 10 mins 11 mins ~24 mins
QUANTUM coMP with polynomial
runtime
Complexity
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Quantum Computing : Where we are ©

2016: IBM Q Network (5 qubits)

2017: Atos introduced

* 1981: First basic model of ’ t L . * mid-term 2023/2026
a quantum computer Slua:_um earning « up to 5000 qubits
R. Feynman achine « NISQ devices : « Quantum Advantage »
Discovery phase FTQC era
1994 Quantum algorithm Today 2035+: Logical qubits
evelopment to factorize large .
numberI;. b Shor 9 . NISQ HW (10-500 qubits) FTQC (Fault Tolerant
: (IBM, Google, Intel, DWave, Quantum Computers)

Rigetti, Honeywell...
Pasqgal Quandela, IQM, AQT ...

« Emulators / Learning Systems
(Atos QLM, NVIDIA ..)
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Boolean gates
Boolean circuit

;D° Serial logic

© o » B O O
©o o » O B+ O

0

bit 1 bit 2 bit 3 bit 4 1
0000
1111

Each bit is in a definite state : 0 or 1
Reading a bit does not change the state
* You can copy a bit

All of the information of a bit is stored in that bit 011100110
bits do not interact
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| Hadamard gate CNOT gate, B

1 1 1 | 1 ' Quantum gates

Quantum ComPUtlng ' | — | | Quantum circuit
. 10z —— —
A few fundamental notions L L paraleliogi e[
v' Basic unit of quantum v In QC, the computational power of a
QUANTUM BIT information system is expressed in # of qubits
“QUBIT” v Two-state quantum-mechanical
system v N qubits 2 2V information

When measured, they
collapse to one of the
states: [0> or |1>

Qubits can be in
superposed |0>
and |1> states

SEVAV=
SUPERPOSITION

and

MEASUREMENT

N-qubit system = 2N states

Entangled qubits have their states Measurement of a single qubit
QUANTUM in interaction with each other. They will influence the S

ENTANGLEMENT cannot be described independently as a whole!
of the state of the others
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Quantum Computing Challenges (1/3) : making Qubits

Photons
lons Neutral Atoms

N Image from the
Centre for Quantum

. 133Cs Messenger
Computation & (Quantum Read/Write uﬂg
Communication :
Technology, credit

Matthew Broome A‘\? -

SLi Qubit Lattice

.

Credit: S. Debnath and E. Edwards/JQI Image from Cheng

. . Group, University of
Monroe Group, University of Maryland/JQI -
p y y Q Chicago

Solid-state

Nuclear

d efe CtS Ehc"q"i ﬁspin a
NV Centers, i, o
Phosphorous in Si, , fog )
SiC defects, etc. N

Image from Hanson Group, Delft
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Quantum Computing Challenges (2/3): Connecting qubits

Connecting 2 or 3 —o Fal
qubits is easy © © IBM 65 Q
Hummingbird
o0 l @ ?
0000 °
Adding more qubits ~ mees s

IBM Osprey 433 qubits

is complicated

+ Several possibilities for noisy qubits exists :

But

* A major engineering problem is : scaling !

 Difficulty is exponential

+ State of the art (Nov. 2022 : 433 qubits IBM), no error correction
» 500-4000 uncorrected qubits expected in the coming 3 years

* But the goalis to reach ...... one million of qubits !!




Quantum Computing Challenges (3/3):

— Cryostat
— Cabling and multiplexing

— Amplifiers

es- on ox

(®) QuantrolOx 'D
I O\ oo On. @5 X
u @

EEETZ -sLuerors Maybell IR

Temperature
near abs.zero (-273.15°C)
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(Some) Factors contributing to the overall system
Where do the « errors » come from (noisy qubits & NISQ Era)

» Qubit size

» Gate Fidelity / Errors (single qubit, multiple qubits)

» Coherence time : How long a quantum state live (#100us to ms)

» Measurement Fidelity

» Connectivity between qubits [ Merwe

%%

K,
%_
g

Coherence of the NV center

Lifetime of the flux qubit (Ty) 1

Lifetime of the NV center

1
| NVcenter:Toy=100 s |
temm - Hybridization

» « Crosstalk» / Spectator errors

Trusted partner for your Digital Journey
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Qo Q15 Q114 Q13 Q12 Q11 Q10

Two-qubit exchange interaction is mediated by the bus resonator.
9

Fidelity

Speed
Manufacturing
Qubit Variability
Operation T
Connectivity

Entangled
qubits

Maud Vinet, Grenoble

Superconductor Sispin Trapped ions Photons NV centers Neutral atoms
(100pm)* (100nm)* (Imm)* ~(100pm)* ~(100um)* (1pm)*
- 50% (mesure)
99.3% 99.6% ~99.9% 98% (portes) 98% (probabilistic) 95%
100 ns ~Tps 100 ps. 1ms 100ms 1ms
3% 0.1%-0.5% 0.0001% 0.5% 0.001% 0.0001%
50mK 10mK-1K 300K 4K 4K 300K
4 4 10 2 5 10
53 6 20 18 20 192




Quantum eco-system
Microwaves u

Current
Laser Electron

L J ’ Vacancy—s |
y/ = ol e
Capacitors & ¢ = - -. [} =
r 3 E o ﬂqnn
i . — -_ N e

: eronaves Electron c A
ions impuretés QI;AN‘gm
diamants

Inductor

quantum
Iinéaire dots silicium piégés

(‘ IONG (i) @
NDKIA PSIQUANTUM

% o

& 5Esio v 11T
) National
T U D e I ft u% University of m I.ah:]ulral?a'lies

-. BRISTOL, YaleUniversity E .?
C ! @ wiversitat @ HARVARD | UDelft
QUTech &

wien
B universitat

UNIVERSITA

V)| peGustuny M innsbruck
2 DEMILANG Universitéat
Raytheon SAPIENZA I@I #1Q" e

boucles supra- qubits optique
conductrices topologiques

BB \ticrosoft @
]
XANADU ‘ te I

AtOeS




Types of Quantum Computers (1/2)

Quantum Annealers

Optimization Problems

Machine learning

Fault analysis
Optimization, logistics, time
scheduling

etc...

classical annealing

quantum tunneling

configuration/path

Ground state of an Ising model
Many ‘noisy’ qubits can be built (# 4000) today
Quantum speedup unclear (not demonstrated)

Trusted partner for your Digital Journey

Quantum Simulators

O M MO/

B [1-®
mmo

0

* Finding the ground state of an Ising model
*  #100/1000 qubits today

Quantum Gate based Computers

Larger Class of problems; Execution of arbitrary
Quantum Algorithms

Material discovery
Quantum chemistry
Optimization
Machine Learning » Combinatorial optimization

» Digital simulation of quantum systems

Algebraic algorithms
(machine learning, cryptography,...)

Quantum Programs

il Bd

—
E

T

t
El-&-G-e-FHe—0——

» Limited ‘noisy’ qubits can be built (# 10-500) today



Types of Quantum Computers (2/2)

classical computers analog quantum computers

quantum quantum
inspired
classical algorithms errtrﬂl::go i quantum quantum
running on classical S T diars annealing SimUIatOrS

computer, inspired
by quantum
algorihms.

created for quantum
computers

optimization problems and quantum
physics simulation

classical algorithms ~ quantum algorithms

improvements debug and testing
Bucoor  AtGS IZEE Diwave
(%) PASQAL
many software
vendors like FU"TSU GO gle @ILMA\UA?O ATO/ N
Multhvarse & Microsoft AWS e
62 e @ ColdQuanta
Alibaba S'é HUAWEI | QUE s

Compuning InG,

digital quantum computers

gate-based
NISQ (Noisy Intermediate FTQC (Fault-Tolerant
Scale Quantum) Quantum Computers)

error correction and
fault tolerance

no error correction
on a few noisy qubits

general purpose quantum computing,
adds search and integer factoring

E_:_E_::i::: rigetti W PsiQuantum
Google |GM Al ice & BOB

3

D

cummmone G IONQ

QUANDELA  (X)
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(*) Slide from Olivier Ezratty, 2022 12




Existing (NISQ) solutions

Intel Just Introduced
rigetti Its First

Buantum Processor
Think Quantum

o I

i
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Quantum Computing - Programming in a nutshell

(Quantum gate based model)

Example a QFT on5 qublts

Create a program

Allocate some qubits

Apply some gquantum gates
Export the program to a circuit
Display the circuit

vvyywyypy

v

Qubits Quantum gates

Measurments

T2

from gat.lang.AQASM import Program, H, CNOT
from gat.gpus import LinAlg

gprog = Program()

abits = gprog.galloc(2)

gprog.apply (H, gbits[01)

gprog.apply (CNOT, gbits)

circuit = rog.to_circ()

%gatdisplay circuit

qo

N —D—

Quantum Gates are "manipulated” through Python

I3

o @ {H——i] )
H [ PHIE] -6 —6—H] @T@ @T@ LJJ (H}-
({1}
M

q1
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Writing your first circuit
A few notions: standard gates

Operator Gate(s) Matrix Operator Gate(s) Matrix

. X —F— o 1 Controlled Not
Pauli-X (X) [' ﬂ] (CNOT, CX)

Pauli-Y (Y) _IYI_ o
[ u] *Control]cd Z (CZ)
Pauli-Z (Z) _@_ [[1’ _?]

-z}
Hadamard ( @ % [: _:] SWAP W i [
0
1

e~
(=Nl N ]
~ooo
|:|‘-'|:3

==

SSo-

Phase (S, P) —{s}- b9
/8 (T) —TH [ o] Ergg'ﬁim,

CCX, TOFF)

L —

_ial®
For non-standard gates, . (1) Y lgl
abstract gates could be XX[0] = T 0 —11 0
defined by a matrix or a routine 2 om0 Bl N
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03. Application domains and
use cases
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Why quantum computing?

Classically solved Classically intractable
problems problems

Quantum Computing
addressable problems




Quantum Circuits for
Applications

Quantum Simulations Linear Systems (Ax = b)

% _EEEEE N
f .
" 2"
- |
N EEEE
211
Ll
Physics Network analysis Graph properties (network
Sharmia Differential equations flows, electrical resistance)
Search

Option pricing, heat transfer
Classification (Machine

Materials discovery Collision finding



Known Quantum Algorithms with a Speedup

Progress in QC Algorithms
300

250

200

150

100

50

0 <.
1980 1990 2000 2010 2020

math.nist.gov/quantum/zoo
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http://math.nist.gov/quantum/zoo/

Quantum Computing applications
Numerous cross-industry impacts

Manufacturing

Autonomous
vehicle
Logistics
Supply chain
Software
validation
Batteries
Polymers

Public Sector &
Defense

Neural
networks
Process
optimization
Cryptanalysis
Material
science
Nanotechnologi
es

Trusted partner for your Digital Journey

Chemistry &
material Science

Materials
science
NanoTech.
Batteries
Polymers
Catalysts,
enzyme
design
Molecular
modeling
Protein folding
Drug
discovery

Financial Services &

Insurance

Fraud
detection
Trading
strategies
Market
simulation
Portfolio
optimization
Risk
assessment
Cryptocurrency

20

Telecom, Media &
Technology

Personalized
content
5G antenna
location

Chip layout
optimization
Post-
quantum

cryptography

Resources &
Services

Smart grids
Flight
scheduling
Oil well
optimization
Yield
management
Cybersecurity
Carbon
dioxide
capture

Health & Life
Sciences

Genomics
Virtual
screening
Protein
folding
Drug
discovery
Personalized
medicine

AtOeS



Chemistry

One of today’s most active application areas!

» Compute the exact energy of large molecules
— This is intractable today

— Cost: 2 qubits per orbital even without error
correction!

Star algorithms

» Variational Quantum Algorithms (VQE and
derivatives)

» New discovery and energy savings in synthesis for TP
fertilizers, lubricants, ... IR S S A TS

computation time —»
»e
9.
.e
se'e’
» .
*
*?
- 3
e
ot
90.

size of basis set ——»
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Atos in the Quantum Landscape

» HPC Manufacturer. #3 in the world
» Invested in Quantum Research since 2016

3 el
» Atos Platform

o Built an HPC fat node (up to 48 TB memory) —
o Complete quantum framework

o Embeds high performance emulators (perfect, simulation
of quantum physics noise)

o Hardware agnostic hybridization

» Used in 30+ HPC Centers -
Our solutions:

« Identify use cases in your production

» We already integrate quantum processors into - Design and test their quantum version
supercompuetrs « Educate your teams
o IQM at LRZ « Provide a hardware-agnostic high

performance quantum simulator

o Pasqal Analog simulator at GENCI

©)

Trusted partner for your Digital Journey 22 Aws



Atos Quantum Learning Machine
Programming environment and a quantum processor emulator

PROGRAMMING

AQASM
Assembly language to
build quantum circuits

CIRC
Binary format of
quantum circuits

INTEROP.
Connectors with other
frameworks

pYAQASM
Python extension to
AQASM

QLIB
AQASM & pyAQASM
libraries

CO problems class
Describe any Combinatorial Optimization problem

ProjectQ

OPTIMIZATION !

PBO
Pattern based
optimizer

NNIZER
Topology constraint
solver

Circuit Optimizer
Generic circuit
optimizer

SIMULATION

SIMULATORS

Digital QC
Simulators
Quantum-Inspired
Simulators

PHYSICS

Physical Noise
models

Trusted partner for your Digital Journey
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Atos Quantum - A universal gateway to quantum technologies

AtOS

@ myam
Universal programming  ®myain
environment

Desktop solution
Omvl M

* Freeware
» Entry-level simulation

» Open-source plugins
Oyl M

Interoperability

Trusted partner for your Digital Journey

@ Atos Quantum Learning Machine

On-Premise solution

* Advanced simulation
- Noise modelling

- Optimization

- Quantum annealing

24

* Multi-tenancy
+ Performance
- Optional GPU acceleration

Universal front-end
for quantum
technologies

Any Quantum
Computing
hardware

Superconducting
Trapped ions
Rydberg atoms

AtSeS



myQLM documentation

https://myqglm.github.io/

Quantum Learning Machine: jupyter notebooks tutorial
myGLM-1.5.1

The Quantum Learning Machine provides a software environment to pragram, compile and execute quantum prof
simulators or on an actual chip whese interface has been implemented.

It comes with a python software stack named "Quantum Application Toolse!" (QAT), available under the general i

Getting started

The getiing staried netebook provides the basic steps to write and simulate your first gquantum circuit.

Tutorial notebooks: overview per theme

Basics

AQASM: the quantum pregramming language of the QLM
Ideal (noise-less) circuit simulation

Customizing computational stack with Plugins

Intercoperability

Full table of contents

. Basics
= EPR pair circuit creation and simulation
= Asking a simulator for an observable average
= Asking a simulator results on a subset of the qubits

. AQASM: the quantum programming language of the glm
= Writing_a basic Guantum Pregram
= PyAQASM ital featur
= Creating_your custom gate set
e Creating_abstract gates and black-boxing_routines
=« AQASM Language: text format

. ldeal (noise-less) circuit simulation

= Demonstration of available execution options

= Analyzing the output of & run

Varatlonal Algorithms (QAOA)

A presentation of the QAOQA circuit generation routines
Adapiative plugins and variational opiimizers

Fun and interactive plugins for variational optimization
Binding with Scipy opfimizers

Customizing computational stack with Plugins

Splitting_cbservables using the ObservableSplitier
Inlining_circuit inside the execution stack via the Circuiflnliner
Writing_ your own plugin

Example: emulafing constrained connectivity

Interoperablllty

Qis nteroperability
Qiskit: connect to IEMQ backend
Pyquil {deprecated for python 3.6)

Cirg
Projecty
Opengasm

. Annealing on myGQLM

Basic example with Ising Antiferromagnet

Unconstrained Graph Problems
o Max Cut

¢ Graph Parfitioning

Constrained Graph Problems
o K-Clique
o \ertex Cover

Other NP Problems
¢ MNumber Partitioning

‘Drgsted partner for your Digital Journey
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Atos Worldwide Quantum Community

From research to productive applications

< 4o p V&' I w ,
& Q@ W QD INTELLIGENT WAVE INC.
— H artree Ce n tr_e <<= f C2= World Wide Technology
Science & Technology Facilities Council m@

cscC

(6,8cr 9 JULICH

E Forschungszentru
R
BMW
GROUP g ; o unversy @
A o3 St = @DF
Argonne NS
B Stanford
W@ University OAK \\l’)
Riber e

CHAMPAGNE-ARDENNE
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Merci et au plaisir de poursuivre ces echanges ©

Olivier HESS

Quantum Computing France
M+ 33 6 76757902
olivierhess@atos.net
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