
I want my job to pass the �rst on Leto

35e journée CaSciModOT

J.-L. Rouet

10 décembre 2021



Understanding the Job Priority

I Job Priority

I Crude way : First In, First Out
I Fair Share : more your got, less you will have
I Multifactor Priority : a touchy way to compute the priority

factor

I How it is working ?

@ leto: > squeue �start -o "%.10A %.10u

%.10C %.10m %.20S %.14l %.10Q %.10p" -t PENDING

%.10A : Job Id
%.10u : User Name
%.10C : CPU
%.10m : Memory

%.20S : Start Time
%.14l : Time Limit
%.10p : normalized Job Priority
%.10Q : Job Priority

I See : @ leto: >man squeue



From queue to computers

pending running
time

cpu

50
70

100
10

cpu

time

pending running
time

cpu

50
70

10

cpu

time

pending running
time

cpu

50

10

cpu

time

pending running
time

cpu

50

10

cpu

time

pending running
time

cpucpu

time



Multifactor Priority

Job_priority =

+ site_factor

+ PriorityWeightAge × age_factor

+ PriorityWeightAssoc × assoc_factor

+ PriorityWeightFairshare × FairShare_factor

+ PriorityWeightJobSize × JobSize_factor

+ PriorityWeightPartition × partition_factor

+ PriorityWeightQOS × QOS_factor

+
∑

(TRES_weightcpu × TRES_factorcpu,

+ TRES_weight<type> × TRES_factor<type>,

+ ...)

− nice_factor



Factor Priority

I Age Factor : length of time a job has been sitting in the queue

I Job Size Factor : can be con�gured to favor larger jobs or smaller
jobs

I TRES Factors : Trackable RESources) depends on the amount of
TRES Type requested/allocated

I FairShare Factor : depends on the CPU asked and already consumed
by the user and siblings

I . . .



Multifactor Priority : Leto actual con�guration

Job_priority =

+ no site_factor

+ 1 000× age_factor

+ 0× assoc_factor

+ 100 000× FairShare_factor

+ 1 000× JobSize_factor

+ 0× partition_factor

+ 0× QOS_factor

+
∑

(0× TRES_factorcpu,

+ 0× TRES_factor<type>,

+ ...)

− nice_factor

⇒ FairShare Factor favored



Equal Share vs Fair Share ?

The most you and fellows have had, the less you get



What is Fair Share ?

8 9 10 11 12 13

1 2

43 5 6 7

14 15 16 17 18 19 20

0

I Based on

I Fair Shaire Tree
I Share Snode : weight attributed to

each node of the tree
I E�ective usage UE :

UEnode
= Unode + (UEparent −Unode) Snode∑

Sibblings Snode

+ UE include also the consumed
resources of your siblings.

I for node 6 whose parent is 2 :

UE6 = U6 + (UE2 − U6) S6
S5+S6+S7

I Fair Share f = 2−UEnode
/Snode

I 0 ≤ f ≤ 1 : highest f is, highest is your
priority

I Unode Could include :

I a dampening factor d to forget the past f = 2−UEnode
/Snode/d

I a TRESBillingWeights to include memory . . . into UE



Alternative way to compute the FairShare factor f

8 9 10 11 12 13

1

43 5 6 7

14 15 16 18 19 20

0

17

2

I With :
f̄node = e−ᾱnode

ᾱnode = Unode

(
1

Snode
− 1

Sparent

)
I then, fnode = f̄node fparent

* give a recursive expression :

f17 = f̄17 f̄6 f̄2



Fair Share for Leto

root

lab

users

1 4 5

a b c d e g h i j k l m nf

2 3

I For Leto : 2 levels

I Laboratories, or structures
I users, attributed to their

lab
I equal share at each level :

Slab = 1/Nlabs

Suserlab = 1/(Nuserslab
Nlabs)

I Exemple for user f :
UEf

Sf
= Nlabs [Uf (N3 − 1) + U3]

I If N3 increases then UEf
/Sf increases too and less is the fair share

factor of user f = 2(−UEf
/Sf )



A More E�cient Slurm

I Ask for resources you really need

I Two partitions ?

I one for high demanding CPU Jobs
I the other for 1 CPU Jobs

I Change our computation of the Job priority ?

I Give the allocated time of your job !


