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Understanding the Job Priority

I Job Priority

I Crude way : First In, First Out
I Fair Share : more your got, less you will have
I Multifactor Priority : a touchy way to compute the priority

factor

I How it is working ?

@ leto: > squeue �start -o "%.10A %.10u

%.10C %.10m %.20S %.14l %.10Q %.10p" -t PENDING

%.10A : Job Id
%.10u : User Name
%.10C : CPU
%.10m : Memory

%.20S : Start Time
%.14l : Time Limit
%.10p : normalized Job Priority
%.10Q : Job Priority

I See : @ leto: >man squeue



From queue to computers
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Multifactor Priority

Job_priority =

+ site_factor

+ PriorityWeightAge × age_factor

+ PriorityWeightAssoc × assoc_factor

+ PriorityWeightFairshare × FairShare_factor

+ PriorityWeightJobSize × JobSize_factor

+ PriorityWeightPartition × partition_factor

+ PriorityWeightQOS × QOS_factor

+
∑

(TRES_weightcpu × TRES_factorcpu,

+ TRES_weight<type> × TRES_factor<type>,

+ ...)

− nice_factor



Factor Priority

I Age Factor : length of time a job has been sitting in the queue

I Job Size Factor : can be con�gured to favor larger jobs or smaller
jobs

I TRES Factors : Trackable RESources) depends on the amount of
TRES Type requested/allocated

I FairShare Factor : depends on the CPU asked and already consumed
by the user and siblings

I . . .



Multifactor Priority : Leto actual con�guration

Job_priority =

+ no site_factor

+ 1 000× age_factor

+ 0× assoc_factor

+ 100 000× FairShare_factor

+ 1 000× JobSize_factor

+ 0× partition_factor

+ 0× QOS_factor

+
∑

(0× TRES_factorcpu,

+ 0× TRES_factor<type>,

+ ...)

− nice_factor

⇒ FairShare Factor favored



Equal Share vs Fair Share ?

The most you and fellows have had, the less you get



What is Fair Share ?
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I Based on

I Fair Shaire Tree
I Share Snode : weight attributed to

each node of the tree
I E�ective usage UE :

UEnode
= Unode + (UEparent −Unode) Snode∑

Sibblings Snode

+ UE include also the consumed
resources of your siblings.

I for node 6 whose parent is 2 :

UE6 = U6 + (UE2 − U6) S6
S5+S6+S7

I Fair Share f = 2−UEnode
/Snode

I 0 ≤ f ≤ 1 : highest f is, highest is your
priority

I Unode Could include :

I a dampening factor d to forget the past f = 2−UEnode
/Snode/d

I a TRESBillingWeights to include memory . . . into UE



Alternative way to compute the FairShare factor f
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I With :
f̄node = e−ᾱnode

ᾱnode = Unode

(
1

Snode
− 1

Sparent

)
I then, fnode = f̄node fparent

* give a recursive expression :

f17 = f̄17 f̄6 f̄2



Fair Share for Leto
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I For Leto : 2 levels

I Laboratories, or structures
I users, attributed to their

lab
I equal share at each level :

Slab = 1/Nlabs

Suserlab = 1/(Nuserslab
Nlabs)

I Exemple for user f :
UEf

Sf
= Nlabs [Uf (N3 − 1) + U3]

I If N3 increases then UEf
/Sf increases too and less is the fair share

factor of user f = 2(−UEf
/Sf )



A More E�cient Slurm

I Ask for resources you really need

I Two partitions ?

I one for high demanding CPU Jobs
I the other for 1 CPU Jobs

I Change our computation of the Job priority ?

I Give the allocated time of your job !


