| want my job to pass the first on Leto
35¢journée CaSciModOT

J.-L. Rouet

10 décembre 2021



Understanding the Job Priority

» Job Priority

» Crude way : First In, First Out

» Fair Share : more your got, less you will have

» Multifactor Priority : a touchy way to compute the priority
factor

» How it is working ?
@ leto: > squeue —start -0 "%.10A %.10u
%.10C %.10m %.20S %.141 %.10Q %.10p" -t PENDING

%.10A : Job Id %.20S : Start Time

%.10u : User Name %.141 : Time Limit

%.10C : CPU %.10p : normalized Job Priority
%.10m : Memory %.10Q : Job Priority

> See : @ leto: >man squeue



From queue to computers

cpu cpu
I._
) time ) time
pending running
cpu cpu




Multifactor Priority

Job _ priority =
+ site_ factor
+ PriorityWeightage x age_factor
+ PriorityWeight assoc X assoc _factor
+ PriorityWeightgairshare % FairShare _factor
+ PriorityWeight jopsize X JobSize _factor
+ PriorityWeightpatition X partition _factor
+ PriorityWeightgos x QOS _factor
+ Y (TRES_weightepy x TRES _factorcpy,
+ TRES _weightsypes X TRES _factorcppes,

+..)
— nice _factor



Factor Priority

» Age Factor : length of time a job has been sitting in the queue

» Job Size Factor : can be configured to favor larger jobs or smaller
jobs

» TRES Factors : Trackable RESources) depends on the amount of
TRES Type requested/allocated

» FairShare Factor : depends on the CPU asked and already consumed
by the user and siblings



Multifactor Priority : Leto actual configuration

Job _ priority =
+ no site_factor
+ 1000 x age_factor
+ 0 x assoc_factor
+ 100000 x FairShare _factor
+ 1000 x JobSize factor
+ 0 x partition _factor
+0 x QOS _factor

-+ Z(O X TRES_faCtOrcpua

+0 x TRES_faCtOI’<type>a
+...)
— nice_factor

= FairShare Factor favored



Equal Share vs Fair Share?

Fair Share

The most you and fellows have had, the less you get



What is Fair Share?

» Based on

» Fair Shaire Tree

» Share S,,q4e : Weight attributed to
each node of the tree

> Effective usage U :

_ Sned,
Uk oo = Unode + (Ubparene = Unode) o totes—

1 Ug include also the consumed
resources of your siblings.
» for node 6 whose parent is 2 :

U56 = U + (Ul_:2 U6)

Ss +56+57

8 9 1011 1213141516 17 18 19 20 . _
» Fair Share f = 2~ YEnode / Snode

» 0 <f <1: highestfis, highest is your
priority
» U,ode Could include :

» a dampening factor d to forget the past f = 27 Ve poue/ Snode/d
» a TRESBiIllingWeights to include memory ... into Ug



Alternative way to compute the FairShare factor £

» With :
fnode = e Cnode
_ 1 1
a = 5.0
node Unode (5,.od¢ Sparene)

> then, frode = nodefparent

@ give a recursive expression :

fir = hufoh

8 9 10111213 14151617 18 19 20



Fair Share for Leto

» For Leto : 2 levels

» |Laboratories, or structures

> users, attributed to their
lab

» equal share at each level :

Siab = 1/Niaps

Suserlab = 1/(Nusers,,l, Nlabs)

U
> Exemple for user f : —=F

S = Niaps [Us (N3 — 1) + Us]
f

> If N3 increases then Ug, /S increases too and less is the fair share
factor of user f = 2(~Ues/S¢)



A More Efficient Slurm

» Ask for resources you really need
» Two partitions ?

» one for high demanding CPU Jobs
» the other for 1 CPU Jobs

» Change our computation of the Job priority ?

» Give the allocated time of your job!




